The Double Helix: A Personal Account of the Discovery of the Structure of DNA

The Double Helix: A Personal Account of the Discovery of the Structure of DNA

Language: English

Pages: 256

ISBN: 074321630X

Format: PDF / Kindle (mobi) / ePub

The classic personal account of Watson and Crick’s groundbreaking discovery of the structure of DNA, now with an introduction by Sylvia Nasar, author of A Beautiful Mind.

By identifying the structure of DNA, the molecule of life, Francis Crick and James Watson revolutionized biochemistry and won themselves a Nobel Prize. At the time, Watson was only twenty-four, a young scientist hungry to make his mark. His uncompromisingly honest account of the heady days of their thrilling sprint against other world-class researchers to solve one of science’s greatest mysteries gives a dazzlingly clear picture of a world of brilliant scientists with great gifts, very human ambitions, and bitter rivalries.

With humility unspoiled by false modesty, Watson relates his and Crick’s desperate efforts to beat Linus Pauling to the Holy Grail of life sciences, the identification of the basic building block of life. Never has a scientist been so truthful in capturing in words the flavor of his work.
















back to normal form. Several days after the fiasco with Bragg, the crystallographer V.Vand sent Max a letter containing a theory for the diffraction of X rays by helical molecules. Helices were then at the center of the lab's interest, largely because of Pauling's α-helix. Yet there was still lacking a general theory to test new models as well as to confirm the finer details of the α-helix. This is what Vand hoped his theory would do. Francis quickly found a serious flaw in Vand's efforts,

muscle physiologists had been accumulating data without tying them into a se1fconsistentr picture. Francis found it a perfect situation for action. There was no need for him to ferret out the relevant experiments since Hugh had already waded through the undigested mass. Lunch after lunch, the facts were put together to form theories which held for a day or so, until Hugh could convince Francis that a result he would like ascribed to experimental error was as solid as the Rock of Gibraltar. Now

during the lunch hour could I be sure that he would talk DNA. Fortunately, John Kendrew sensed that the moratorium on working on DNA did not extend to thinking about it. At no time did he try to reinterest me in myoglobin. Instead, I used the dark and chilly days to learn more theoretical chemistry or to leaf through journals, hoping that possibly there existed a forgotten clue to DNA. The book I poked open the most was Francis' copy of The Nature of the Chemical Bond. Increasingly often, when

euphoric moods about how α-helices packed together in coiled coils. The trouble was that his mathematics never gelled tightly. When pressed he admitted that his argument had a wolly component. Now he faced the possibility that Linus' solution would be no better and yet he would get all the credit for the coiled coils. Experimental work for his thesis was broken off so that the coiled-coil equations could be taken up with redoubled effort. This time the correct equations fell out, partly thanks

inspired than our awkward efforts of the year before would, I thought, amuse her. The result was just the opposite. Instead, she became increasingly annoyed with my recurring references to helical structures. Coolly she pointed out that not a shred of evidence permitted Linus, or anyone else, to postulate a helical structure for DNA. Most of my words to her were superfluous, for she knew that Pauling was wrong the moment I mentioned a helix. Interrupting her harangue, I asserted that the

Download sample